Reducing Base Register Utilization:
How to “Jumpify” Your Programs
Edward E. Jaffe

Phoenix Software International, Inc.

Monday February 28, 2011
Session 8548

3}
Optimization © £
Solutighs e
Influence Virfualizatio
uting Exfierience terprise
abie Mg " EDEHT‘“

ESA/390 Based Branch Instructions

BAL R1,D2(X2,B2) [RX]
457 R1 X2 B> D>

0 8 12 16 20 31

BAS R1,D2(X2,B2) [RX]
4D’ R1 X2 B> D>

0 8 12 16 20 31

BC M1,D2(X2,B2) [RX]
47’ M1 X2 B> D>

0 8 12 16 20 31

g

p—

RX and RS format.
Displacement odd or

S H
Technology +

[

onnections - Results

even -- always positive.

* Only Y2 of displacements
result in a valid branch.

o 12-bit displacement

means max is 4095 bytes

(X'FFF".
 Odd branch address
results in PIC 0006.

Used for conditional

program logic and “near”

subroutine calls.

ESA/390 Based Branch Instructions

BCT R1,D2(X2,B2) [RX]
*46° M1 X2 B> D2

0 8 12 16 20 31

BXH R1,R3,D2(X2,B2) [RS]
*86° R1 R3 B> D2

0 8 12 16 26 31

BXLE R1,R3,D2(X2,B2) [RS]
*87° R1 R3 B> D2

0 8 12 16 26 31

S H
Technology +

onnections - Results

Based Branch Instructions Added with

zIArchitecture
BCTG R1,D2(X2,B2) [RXY]
"E3’ R1 X2 B> DL> DH2 *46°
0 8 12 16 20 i 32 40 47
BXHG R1,R3,D2(X2,B2) [RSY]
"EB’ R1 R3 B> DL2 DH> 447
0 8 12 16 20 7 32 40 47
BXLEG Ri1,R3,D2(X2,B2) [RSY]
"EB’ R1 R3 B> DL> DH2 457
0 8 12 16 20 i 32 40 47

S H
Technology +

onnections - Results

-
BC Extended Mnemonics SHARE

BH Branch on High BC 2 BP Branch on Plus BC 2
BL Branch on Low BC4 BM Branch on Minus BC4
BE Branch on Equal BC 8 BO Branch on Overflow BC 1
BNH | Branch on Not High BC 13 BZ Branch on Zero BC 8
BNL Branch on Not Low BC 11 BNP | Branch on Not Plus BC 13
BNE Branch on Not Equal BC 7 BNM | Branch on Not Minus BC 11

BNZ | Branch on Not Zero BC 7
BO Branch if Ones BC1 BNO | Branch on Not Overflow | BC 14
BM Branch if Mixed BC 4
BZ Branch if Zero BC 8
BNO | Branch if Not Ones BC 14
BNM | Branch if Not Mixed BC 11
BNZ Branch if Not Zero BC 7

)

p—

About (Based) Branches SHARE

For decades, all branches were based. There was no need
for differentiation.

The use of (based) branch instructions requires that nearly
every line of program code be "covered" by a base
register.

Based branches are subject to processor pipeline delays
due to Address Generation Interlock (AGI).

Base registers are loaded more often than programmers
realize (e.g., reloading registers on return from
subroutine).

For historical reasons, many experienced assembler
language programmers continue to use the word “branch”,
In an ungqualified manner, to mean a based branch.

Sample (Based) Branch Usage

Loc

.0000000C
.00000010
.00000014
.00000018
.0000001C
.0000001C
.00000020

Loc

.0000000C
.00000010
.00000014
.00000018
.0000001C
.0000001C
.00000020

Object Code

9180
4780
4DEQ
47F0

4DEQ

Object Code

9180
4780
4DEQ
47F0

4DEQ

C084
CO1C
C084
€020

C084

C084
CO01C
C084
C020

C084

Addrl

00000084

Addrl

00000084

Addr?

0000001C
00000084
00000020

00000084

Addr2

0000001C
00000084
00000020

00000084

Stmt
25
26
27
28
29
30
31
32
33
34

Stmt
25
26
27
28
29
30
31
32
33
34

—

Y

SHARE

Technology * Connections * Results.

—

Source Statement
*hkkkhkkkkhkkkkhkkkhhkkkhkhkkkhxk
* Standard Mnemonics *
*khkkkkkhkkkhkkhkkkhkkkkkkhhkkhkkk
™ FLAG,BIT
BC 8,NOTSET
BAS R14,ITS_ON
BC 15,CONTINUE
NOTSET DC OH
BAS R14,ITS_OFF
CONTINUE DC OH

Source Statement

*khkkkkhkkkhkhkkkhkkkhkkhkkhkkhkhkkkkx
* Extended Mnemonics *
*hkkkhkkkkhkkkkhkhkkkhkhkkkhkkhkkkixk

™ FLAG,BIT

BZ NOTSET

BAS RI14,ITS_ON

B CONTINUE
NOTSET DC OH

BAS R14,ITS_OFF
CONTINUE DC OH

Sample Program >4KiB with Complete i

Base Register Coverage SHARE

[

* As the program grows, the number of available registers
shrinks.

* Reduced register availability leads to less efficient code.
« Eventually, additional growth becomes impossible.

. Loc Object Code Addrl Addr2 Stmt Source Statement
.00000000 00000000 00000041 2 MULTIBAS CSECT ,
. 3 * [save registers]
.00000000 18CF 4 LR R12,R15
.00000002 41B0O C800 00000800 5 LA R11,2048(,R12)
.00000006 41B0O B80O 00000800 6 LA R11,2048(,R11)
.0000000A 41A0 B80O0 00000800 7 LA R10,2048(,R11)
.0000000E 41A0 A800 00000800 8 LA R10,2048(,R10)
.00000012 4190 A800 00000800 9 LA R9,2048(,R10)
.00000016 4190 9800 00000800 10 LA R9,2048(,R9)
R:CBA9 00000000 11 USING MULTIBAS,R12,R11,R10,R9
15 * .
16 * . (16KiB code & constants)
. 17 * .
.00000030 18 LTORG ,

41 END

e
Mitigating Limitations on Addressability suare
* QOver the years, many smart programmers invented clever
techniques to mitigate limitations on addressability.

* Too many to list. (I probably would not able imagine them
all anyway.)

* Probably no single "best" solution.

* I'll show one example for illustrative purposes.

Mitigating Limitations on Addressability

Y

SHARE

Technology * Connections * Results.

—

» Using three base registers, this program can support many

4KIB routines.

* New base register needed only if mainline routine requires
expansion. (Each subroutine requires 12 mainline bytes.)

. Loc
.00000000

.00000000

.00000002
.00000006

_0000000A
0000000

.00000010
100000014

_00001F64
_00001F68

_00001F70

Object Code

18CF
41B0 C800
41B0 B800

58F0 BF64

ODEF

58F0 BF68
ODEF

00001F82
00002F30

Addrl
00000000

R:CB 00000000

00001F81

Addr?
00003EED

00000800
00000800

00001Fo64

00001F68

Stmt

Source Statement
MULTIRTN CSECT ,

*

*
*
*

RTN1A
RTNnA

*

[save registers]

LR R12,R15

LA R11,2048(,R12)

LA R11,2048(,R11)

USING (MULTIRTN,MULTIMLX),R12,R11

L R15,RTNIA
BASR R14,R15
L R15,RTNnA

BASR R14,R15
. (8KiB mainline & constants)

DC A(RTND)
DC A(RTNN)

LTORG ,

MULTIMLX EQU *

Mitigating Limitations on Addressability

_00001F81 00
_00001F82

00001F82 18AF
R:A 00001F82

_00002F30
00002F30

_00002F30

_00002F30 18AF
R:A 00002F30

_00003EE0
00003EEQ

30

31
32
33
34
36
37
38
39
40
41

42
43
44
45
46
48
49
50
51
52
53

RTN1

)(.

RTN1X

RTNn

*

RTNnX

—

Y

SHARE

Technology * Connections * Results.

—

PUSH USING

DC OH

[save registers]

LR R10,R15

USING (RTN1,RTN1X),RI1O0

(4KiB subroutine & constants)

LTORG ,
EQU *
POP USING

PUSH USING

DC OH

[save registers]

LR R10,R15

USING (RTNn,RTNnX),R10

(4KiB subroutine & constants)

LTORG ,

EQU *
POP USING

A Clever Compiler-Only Solution

—

S H
Technology +

[

Y

onnections - Results

» Load constant values of 4KiB, 8KiB, and 12KiB into three

Index registers and load base registers 16KiB apart.

« Knowing the branch target, the compiler selects the
appropriate base/index for each generated branch.

» Using this technique, five registers can cover 32KiB, six

registers can cover 48KiB, etc.

00BO-OFFF Covered by 1st base BC xx,ddd(6,Bl1)
1000-1FFF Covered by 15t base + 4096 BC xx,ddd(I1,B1)
2000-2FFF Covered by 15t base + 8192 BC xx,ddd(I2,Bl1)
3000-3FFF Covered by 1St base + 12288 BC xx,ddd(I3,Bl)
4000-4FFF Covered by 2" base BC xx,ddd(®,B2)
5000-5FFF Covered by 2" base + 4096 BC xx,ddd(I1,B2)
6000-6FFF Covered by 2" base + 8192 BC xX,ddd(I12,B2)
7000-7FFF Covered by 2" base + 12288 BC xx,ddd(I13,B2)

Why Has the Industry Transitioned to A
Relative Branch? SHARE

* Fetching of instructions by hardware does not depend
upon base register contents. Rather, only the contents of
the right half of the Program Status Word are needed.

* As you’ve seen 4KiB branch displacements are highly
restrictive. Segmenting and reorganizing growing
programs is a waste of precious manpower.

* An addressability shortage usually comes as an “Oh No!”

surprise at the worst possible moment, sometimes adding
hours or days to an otherwise simple project.

* Relative branch is better performing: not subject to AGI
and uses a less complex address resolution scheme!

* Arguably one of the most important and useful
Improvements on the platform.

ESA/390 Relative Branch Instructions

BRAS R1,1I? [RI]
A7’ R1 I,

0 8 12 16 31

BRC M1, 12 [RI]
A7’ M1 I,

0 8 12 16 31

BRCT Ri,I2 [RI]
*A7° R1 I

12

16

31

g

SHARE
Technology * Connections * Results

p—

Rl and RSI format.

Offset from current
Instruction address is
signed number of
halfwords, represented
by the immediate value.

« Maximum valid offset is
nearly +64KiB.

Originated on non-IBM
PCMs in Japan.

Implemented in IBM
ESA/390 hardware as
part of Relative-
Immediate facility.

ESA/390 Relative Branch Instructions

BRXH Ri1,R3,1I2 [RST]
*84° R1 R3 I2

0 8 12 16 31

BRXLE Ri1,R3,1I2 [RST]
"85’ R1 R3 I2

0 8 12 16 31

S H
Technology +

onnections - Results

Relative Branch Instructions Added with - Y
Z/Architecture SHARE
BRCTG R, 12 [RI] » Rl and RIE format.
A7’ R1 7’ I2
@ 8 12 16 31
BRXHG Ri1,R3,1I2 [RIE]

"EC” | Ru | Rs I [T 70]) 7447

0 8 12 16 32 40 47

BRXLG R1,R3,I2 [RIE]

"EC” | Ru | Rs I (1177177 7457

0 8 12 16 32 40 47

Relative Branch Instruction Added with

ZEnterprise
BRCTH R1,I2 [RIL-b]
"CC* | Ru I2
0 8 12 16 32 40 47

BRC/BRAS Extended Mnemonics SHARE
JH Jump on High BRC 2 JP Jump on Plus BRC 2
JL Jump on Low BRC 4 JM Jump on Minus BRC 4
JE Jump on Equal BRC 8 JO Jump on Overflow BRC 1
JNH | Jump on Not High BRC 13 JZ Jump on Zero BRC 8
JNL Jump on Not Low BRC 11 JNP [Jump on Not Plus BRC 13
INE Jump on Not Equal BRC 7 JNM | Jump on Not Minus BRC 11

JNZ | Jump on Not Zero BRC 7
JO Jump if Ones BRC 1 JNO | Jump on Not Overflow | BRC 14
JM Jump if Mixed BRC 4
JZ Jump if Zero BRC 8
JNO | Jump if Not Ones BRC 14
JNM | Jump if Not Mixed BRC 11
JNZ | Jump if Not Zero BRC 7 JAS | Jump and Save BRAS

Relative Branch Long Instructions

« Maximum valid offset is +4GIB

* Available on machines that implement z/Architecture.

* So-called "N3" addition to ESA/390 instruction set.

BRASL R1,1I2 [RIL]
/
"CO’ R1 ‘h’ I,
0 8 12 16 7 47
BRCL M1,12 [RIL]
//
"CO’ M1 ‘4’ I,

8

12

16

47

BRCL/BRASL Extended Mnemonics SHARE
JLH Jump on High BRCL 2 JLP Jump on Plus BRCL 2
JLL Jump on Low BRCL 4 JLM Jump on Minus BRCL 4
JLE Jump on Equal BRCL 8 JLO Jump on Overflow BRCL 1
JLNH | Jump on Not High BRCL 13 JLZ Jump on Zero BRCL 8
JLNL | Jump on Not Low BRCL 11 JLNP | Jump on Not Plus BRCL 13
JLNE | Jump on Not Equal BRCL 7 JLNM | Jump on Not Minus BRCL 11

JLNZ | Jump on Not Zero BRCL 7
JLO | Jump if Ones BRCL 1 JLNO | Jump on Not BRCL 14
JLM Jump if Mixed BRCL 4 Overflow
JLZ Jump if Zero BRCL 8
JLNO | Jump if Not Ones BRCL 14 JLU Jump Unconditional | BRCL 15
JLNM | Jump if Not Mixed BRCL 11
JLNZ | Jump if Not Zero BRCL 7 JASL | Jump and Save BRASL

In each of the BRCL cases, BR can be substituted for J. But who cares?

3
Which Base Registers Are Eliminated? SHARE

!!!!!!!!!!!!!!!!!!!!!!!!!!!

* Program code no longer requires base register coverage.

« Some programmers like to use the term "baseless" to
describe programs that don’t use based branches.

* The latest hardware generations support relative data
references for many new instructions. Nevertheless,
programs are still expected to have base register coverage
for constants (literals are a subset of constants).

* Non-reentrant programs are still expected to have base
register coverage for local working storage. This might be
the same base used for constants.

Note: From this point on, | will use the term “jump” to
mean relative branch and the term “branch” to mean
based branch.

Sample Jump Usage

Loc

.0000000C
.00000010
.00000014
.00000018
.0000001C
.0000001C
.00000020

Loc

.0000000C
.00000010
.00000014
.00000018
.0000001C
.0000001C
.00000020

Object Code

9180
A784
A7ES5
A7F4

A7ES

Object Code

9180
A784
A7ES
A7F4

A7ES5

C084
0006
0038
0004

0034

C084
0006
0038
0004

0034

Addrl

00000084

Addrl

00000084

Addr?

0000001C
00000084
00000020

00000084

Addr2

0000001C
00000084
00000020

00000084

Stmt
26
27
28
29
30
31
32
33
34
35

Stmt
25
26
27
28
29
30
31
32
33
34

—

Y

—

SHARE
Technology * Connections * Results.
Source Statement
*hkkkhkkkhkkhkkkhkkhkkkkhkkkkhkkhkkhkk*k
* Standard Mnemonics *
*hkkhkhkkkhkkhkkkkhkkhkkkhkkkkkkkkk
™ FLAG,BIT
BRC 8,NOTSET
BRAS R14,ITS_ON
BRC 15,CONTINUE
NOTSET DC OH
BRAS R14,ITS OFF
CONTINUE DC OH

Source Statement

*khkkkkhkkkhkhkkkhkkkhkkhkkhkkhkhkkkkx
* Extended Mnemonics *
*hkkkhkkkkhkkkkhkhkkkhkhkkkhkkhkkkixk

™ FLAG,BIT

Jz NOTSET

JAS R14,ITS_ON

J CONTINUE
NOTSET DC OH

JAS R14,ITS_OFF
CONTINUE DC OH

Sample Jump Long Usage

Loc

.0000000C
.00000010
.00000016
.0000001C
.00000022
.00000022
.00000028

Loc

.0000000C
.00000010
.00000016
.0000001C
.00000022
.00000022
.00000028

Object Code

9180
C084
COE>5
COF4

COE5

co8C
0000
0000
0000

0000

0009
003B
0006

0035

Object Code

9180
C084
COE5
COF4

COE>S

c08C
0000
0000
0000

0000

0009
003B
0006

0035

Addrl

0000008C

Addrl

0000008C

Addr?

00000022
0000008C
00000028

0000008C

Addr2

00000022
0000008C
00000028

0000008C

Stmt
25
26
27
28
29
30
31
32
33
34

Stmt
26
27
28
29
30
31
32
33
34
35

—

Y

SHARE

Technology * Connections * Results.

—

Source Statement
*hkkkhkkkkhkkkkhkkkhhkkkhkhkkkhxk
* Standard Mnemonics *
*khkkkkkhkkkhkkhkkkhkkkkkkhhkkhkkk
™ FLAG,BIT
BRCL 8,NOTSET
BRASL R14,ITS_ON
BRCL 15,CONTINUE
NOTSET DC OH
BRASL R14,ITS_OFF
CONTINUE DC OH

Source Statement

*khkkkkhkkkhkhkkkhkkkhkkhkkhkkhkhkkkkx
* Extended Mnemonics *
*hkkkhkkkkhkkkkhkhkkkhkhkkkhkkhkkkixk
™ FLAG,BIT
JLZ NOTSET
JASL R14,ITS_ON
JLU CONTINUE
NOTSET DC OH
JASL R14,ITS_OFF
CONTINUE DC OH

,fa!I,
Sample Base Register Coverage For g =

Constants Only SHARE

[

* One base register still covers 4KiB. If your program will
use instructions that support long (20-bit) displacements,
you can extend this.

* This example uses LR/AHI instead of LARL. If your
program will run only on machines that implement
z/Architecture, you can use LARL even in ESA/390 mode.

. Loc Object Code Addrl Addr? Stmt Source Statement

.00000000 00000000 00000091 2 NOCODBAS CSECT ,

. 3 * [save registers]

.00000000 18CF 4 LR R12,R15

.00000002 A7CA 0078 00000078 5 AHI R12,CONST-NOCODBAS
R:C 00000078 6 USING CONST,R12

)(.

31 . (64KiB code)
32 * . One AHI

.00000076 0000 advances up to

.00000078 33 CONST DC 0D

34 * . 32KiB onIy.
35 * . (4KiB constants)

. 36 * .

.00000080 37 LTORG ,

41 END

Compare and Branch Instructions SH

onnections - Results

« Maximum branch displacement is +4KiB
 Available starting with IBM System z10 processors.

CRB Ri,R2,M3,D4(B4) [RRS]
EC’ | R | Re | Be | Dy M |/111] F6°
0 8 12 16 20 / 32 36 40 47
CGRB Ri,R2,M3,Ds(B4) / [RRS]
ECC | R | Re | Be | Dy My |//11] E4"

,

0 8 12 16 20 32 36 40 47

Compare and Branch Relative °a
Instructions SHARE

« Maximum valid offset is £64KiB (no “long” 32-bit form)
 Available starting with IBM System z10 processors.

CRJ R1,R,,M,RI, [RIE-b]
B | R R L M |/111] 76"
0 8 12 16 / 32 36 40 47
CGRJ R1,R,,M,,RI, [RIE-b]
B | R R L My |//11] 64°
,

0 8 12 16 32 36 40 47

Compare Immediate and Branch

Instructions

« Maximum branch displacement is +4KiB

« Available on System z10 and higher processors.

CIB Ri,I2,M3,D4(B4) [RIS]
"EC” Ri | M3 | Ba / D4 Iz “FE’
0 8 12 16 20 7 32 46 47
CGIB Ri,I2,M3,D4(B4) / [RIS]
"EC” Ri | Ms | Ba / D4 I2 “FC”’

/

12

16

32

40 47

S H
Technology +

onnections - Results

Compare Immediate and Branch Relative - ¥
Instructions SHARE

« Maximum valid offset is £64KiB (no “long” 32-bit form)
* Available on System z10 and higher processors.

CIJd Ri,I2,M3,RI4 [RIE-c]
"EC’ R1 M3 I/4 I2 A
0 8 12 16 7 32 40 47
CGIJ Ri,I2,M3,RI4 / [RIE-c]
"EC’ R1 M3 1/4 I2 “/C’
/

0 8 12 16 32 40 47

Compare Logical and Branch s
Instructions SHARE

« Maximum branch displacement is +4KiB
 Available starting with IBM System z10 processors.

CLRB Ri,R2,M3,D4(B4) [RRS]
EC’ | R | Re | Be | Dy Ms /111 F7°
0 8 12 16 20 / 32 36 40 47
CLGRB Ri,R2,M3,D4(Ba) / [RRS]
ECC | R | Re | Be | Dy Ms |////] E5"

,

0 8 12 16 20 32 36 40 47

Compare Logical and Branch Relative s
Instructions SHARE

« Maximum valid offset is £64KiB (no “long” 32-bit form)
 Available starting with IBM System z10 processors.

CLRJ R1,R,,M,,RI, [RIE-b]

B | R R L Ms /111 77

0 8 12 16 / 32 36 40 47

CLGRJ R1,R,,M,,RI, [RIE-b]

B | R R L My /11 1] 65°
,

0 8 12 16 32 36 40 47

Compare Logical Immediate and Branch
Instructions

« Maximum branch displacement is +4KiB

« Available on System z10 and higher processors.

CIB Ri,I2,M3,D4(B4) [RIS]
"EC” Ri | M3 | Ba / D4 Iz “FF’
0 8 12 16 20 7 32 46 47
CGIB Ri,I2,M3,D4(B4) / [RIS]
"EC” Ri | Ms | Ba / D4 I2 “FD’

/

12

16

32

40

47

Compare Logical Immediate and Branch - ¥
Relative Instructions SHARE

« Maximum valid offset is £64KiB (no “long” 32-bit form)
* Available on System z10 and higher processors.

CIJd Ri,I2,M3,RI4 [RIE-c]
"EC’ R1 M3 I/4 I2 “7F’
0 8 12 16 7 32 40 47
CGIJ Ri,I2,M3,RI4 / [RIE-c]
"EC’ R1 M3 1/4 I2 ‘7D’
/

0 8 12 16 32 40 47

Compare and Branch Extended &
Mnemonics

SHARE
Technology * Connections * Results.

[

« Extended mnemonics for the compare and branch
Instructions follow familiar pattern.

» Rather than explicitly specifying M, value, you can append
a suffix from the following table:

Suffix | Meaning Mask
Chars Field
E Equal 8

H First operand high 2

L First operand low 4

NE Not equal 6

NH First operand not high 12
NL First operand not low 10

Example:

Cd JNE R10, -123, LABEL
IS equivalent to:

CdJ R10,-123, 6, LABEL

* No mnemonics for “zero”, “ones”, “positive”, “mixed”, etc.

e

Y

—

Sample Compare and Branch Usage SHARE
Loc Object Code Addrl Addr2 Stmt Source Statement

28 *hkkkhkkkhkkhkkkhkkhkkkkhkkkkhkkhkkhkk*k

29 * Standard Mnemonics *
. 30 kAkhkkkhkkhkkhkkhkkkhkhkk,hkhkhkhkkhkhkk
.0000000C ECAB CO1A 70F6 0000001A 31 CRB R10,R11,7,NOTEQUAL
.00000012 4DEQO CO022 00000022 32 BAS R14,SAME
.00000016 47F0 CO1lE 0000001E 33 BC 15,CONTINUE
.0000001A 34 NOTEQUAL DC OH
.0000001A 4DEO CO022 00000022 35 BAS R14,DIFFERENT
.0000001E 36 CONTINUE DC OH

Loc Object Code Addrl Addr? Stmt Source Statement

26 kAkhkkkhkkhkkhkkhkkkhkhkk,hkhkkhkhkhkkk

27 * Extended Mnemonics *
. 28 kkkhkkkkhkhkkkhkhkkkhkkhkkhkkhkkhkkkk
.0000000C ECAB CO1A 70F6 0000001A 31 CRBNE R10,R11,NOTEQUAL
.00000012 4DEO C022 00000022 32 BAS R14,SAME
.00000016 47F0 CO1lE 0000001E 33 B CONTINUE
.0000001A 34 NOTEQUAL DC OH
.0000001A 4DEO CO022 00000022 35 BAS R14,DIFFERENT
.0000001E 36 CONTINUE DC OH

e

Y

—

Sample Compare and Jump Usage SHARE
Loc Object Code Addrl Addr2 Stmt Source Statement

28 *hkkkhkkkhkkhkkkhkkhkkkkhkkkkhkkhkkhkk*k

29 * Standard Mnemonics *
. 30 kAkhkkkhkkhkkhkkhkkkhkhkk,hkhkhkhkkhkhkk
.0000000C ECAB 0007 7076 0000001A 31 CRJ R10,R11,7,NOTEQUAL
.00000012 A7E5 0008 00000022 32 BRAS R14,SAME
.00000016 A7F4 0004 0000001E 33 BRC 15,CONTINUE
.0000001A 34 NOTEQUAL DC OH
.0000001A A7E5 0004 00000022 35 BRAS R14,DIFFERENT
.0000001E 36 CONTINUE DC OH

Loc Object Code Addrl Addr? Stmt Source Statement

26 kAkhkkkhkkhkkhkkhkkkhkhkk,hkhkkhkhkhkkk

27 * Extended Mnemonics *
. 28 kkkhkkkkhkhkkkhkhkkkhkkhkkhkkhkkhkkkk
.0000000C ECAB 0007 7076 0000001A 31 CRJINE R10,R11,NOTEQUAL
.00000012 A7E5 0008 00000022 32 JAS R14,SAME
.00000016 A7F4 0004 0000001E 33 J CONTINUE
.0000001A 34 NOTEQUAL DC OH
.0000001A A7E5 0004 00000022 35 JAS R14,DIFFERENT
.0000001E 36 CONTINUE DC OH

“Should Not Occur” Abends SHARE

* You can make a branch abend only if taken.
« Useful while debugging or for “should not occur” logic errors.

« My favorite technique was to ZAP (or otherwise set) the last
bit of the branch displacement ON, resulting in PIC 006 only
when branch taken because of invalid displacement.

* There are no invalid jump offsets. However, you can still
make a jump abend only if taken.

e Result is PIC 001 only if branch taken.

CLI O(R1),X’FF’ End of table ?
JE *+2 Abend - logic error

,fa!I,-
Loading the Address of an Area Within s

Your Program SHARE

« Without a base register, the LA instruction will not work.

« On machines with z/Architecture (and N3 ESA/390):
LARL Rx,ADDRESS

* There is no LAR instruction. Therefore, on older machines,
you must use other techniques. Some examples:

1. BASR Rx,0
AHI Rx,ADDRESS-*

LA Rx,0(,Rx)

2. CNOP 0,4 LA necessary if high-
JAS Rx, *+8 order bit must be off.
DC ACADDRESS-*) (Can’t be used for RO!)
AL Rx,0(,Rx)
LA Rx,0(,Rx)

3. L Rx,=A(ADDRESS)

,wa!-,-

)

—

Establishing Temporary Addressability SHARE

You might need temporary addressability, especially when
using certain IBM macros (such as those for TSO/E.).

Be sure to explicitly denote the USING range. The default
range of 4K can lead to USING overlap warnings from the
assembler.

BASR Rx,0
USING (*,TEMPX),RxX

. (code needing addressability)

TEMPX DC OH

Yy
Using SYS1.MACLIB(IEABRC) in z/OS SHARE

« COPYing IEABRC creates 21 macros and uses OPSYN to
Intercept and convert branch instructions.

* Helps with IBM macros that still require program base
registers. There are fewer and fewer of these every year.

* There are cases where you will want to selectively enable
and disable this conversion. Prior to z/OS 1.10, | had my
own macro to do this.

* With z/OS 1.10, the new IEABRCX macro was introduced
to “manage” IEABRC. You can dynamically enable/disable
the effects of IEABRC as well as save/restore the current
settings on a stack (PUSH/POP). Highly recommended!

IEABRCX Usage

. Loc Object Code Addrl Addr? Stmt

.0000000C 47F0 COAO 000000A0 28

29

366

391

392

. 393

.00000010 47F0 COAO 000000A0 394

395

. 420
.00000014 A7F4 0046 000000A0 422+

. 423

.00000018 47F0 COAO 000000A0 448

449

450

451

452

453

. 478
.0000001C A7F4 0042 000000A0 480+

. 481

.00000020 47F0 COA4 000000A4 510

)(.

)(.

o

s

SHARE

Technology * Connections * Results.

Source Statement

B LABEL
IEABRCX DEFINE
IEABRCX DISABLE

B LABEL

IEABRCX ENABLE
B LABEL

BRC 15,LABEL (B)
IEABRCX DISABLE
B LABEL

IEABRCX PUSH
IEABRCX ENABLE

B LABEL

BRC 15,LABEL (B)
IEABRCX POP

B LABEL

Branch Tables

Y

onnections - Results

—

S H
Technology +

[

* There is no indexed jump, so base register is mandatory.

* When handling return codes, the register used for
subroutine linkage might be usable as a base.

Loc Object Code

.0000000C A7E5 003F
.00000010 47FF EOO4
.00000014 A7F4 006D
.00000018 A7F4 0073
.0000001C A7F4 0079
.00000020 A7F4 007F

Addr2
0000008A
00000004
000000EE
000000FE
0000010E
0000011E

On return from
CALLSERV, R14 points
to the B instruction!

25
26
27
28
29
30

JAS
B

[N <EFE P i

Stmt Source Statement

R14,CALLSERV
4(R15,R14)
RETCODOO
RETCODO4
RETCODO8
RETCOD12

Target of EXecute

)

onnections - Results

—

S H
Technology +

[

* The target of an EXecute instruction is fetched into I-cache
 It's best to place it close to the EX itself.

. Loc Object Code Addrl Addr2

.0000000C D200 €088 1000 00000088 00000000
.00000012 44F0 coOO0C 0000000C
.00000016 4410 CO1E 0000001E

:OOOOOOlA 47F0 C024 00000024
.0000001E F270 COC8 EOOO 000000C8 00000000

Stmt

25
26

27
28
29
30
31
32

Source Statement

MVC WORKFLD(*-*),0(R1)
EX R15,*-6
EX R1,DUMMYPAK
*
* . (a few other instructions)
*
B CONTINUE
DUMMYPAK PACK DWORD,0(*-*,R14)

* Reference to EX target requires base register coverage.
* There is no EXR instruction. EXRL introduced with z10.

* To maintain similar program layout, establish temporary
addressability. Otherwise define the target with constants.

,«a!-,-

-
Target of EXecute with Other Constants sHARrEe

* You can place target of EX instruction with constants. But

* Be careful! USING(S) in effect when target defined must
match the code if an implicit address is used!

« Deferring declaration of a constant might be problematic in
general-use macros.

EX R1,DUMMYPAK

. (lots of other code) USING for DWORD
must match!

CONST DC 0D
DUMMYPAK PACK DWORD,O(*-*,R14)

g

=
Target of EXecute in Literal Pool SHARE

hnology « Connections - Results

* In a general use macro, you might choose to use a literal.
* Requires FLAG(NOEXLITW) to avoid ASMAO016W warning.
« Can be controlled via ACONTROL instruction.

« Just like before, USING(S) in effect when target/constant
defined must match the code if an implicit address is used!

Loc Object Code Addrl Addr? Stmt Source Statement
34 &ExLitMVC SETC *X’’200°’(X’’D’’)”’
. 35 EX R1,=S(&ExLitMVC,DWORD,0(R14))
.00000024 4410 C18C 0000018C + EX R1,=S(X’200’(X°D’),DWORD,0(R14))

. (other code)

.0000018C D200CODOEOOO 56 =S(X’200°(X'D*),DWORD,0(R14))

« Some convenient “ExLIit"” values:

&ExLitMVC SETC ’X’’200°°(X’’D’’)” MVC instruction w/zero length
&ExLitCLC SETC *X’*’500°°(X’°D’’)’ CLC instruction w/zero length
&EXLitTR SETC *X’°C00’°(X°*’'D*’)” TR instruction w/zero length
&EXLitTRT SETC ’X’’DO0’’(X’°’D’’)’ TRT dinstruction w/zero length
&ExXLitPACK SETC ’X’’200°°(X’°F’’)’ PACK instruction w/zero length

-
Target of EXecute in Location Counter SHARE

 If your program is appropriately structured, use LOCTR to
define the EX target with other constants.

« This option ensures current USINGs are honored!
* This is how we handle EX in most of our products.

. Loc Object Code Addrl Addr? Stmt Source Statement
.00000016 4410 C1A0 000001A0 30 EX R1,DUMMYPAK
.000001A0 00000197 000001A6 31 DATA LOCTR ,
.000001A0 F270 COC8 EOQOO0 000000C8 00000000 32 DUMMYPAK PACK DWORD,0(*-*,R14)
.0000001A 00000000 000001A6 33 CODE LOCTR ,

31 * .

32 * . (more instructions)

33 *

i
Execute Relative Long SHARE

« EXRL intended as a direct substitute for EX.

» Supports long-standing recommendations, to put the target
of the EX near the EX instruction itself, for programs
without code base register coverage.

* Hopefully, same I-Cache line or one to be fetched soon.
* Available on System z10 and higher processors.
 If you can use this, I'm jealous. Too new for our software!

.00000000 C610 0000 0005 0000000A 25 EXRL R1,DUMMYPAK
26 * .
27 * . (a few other instructions)
. 28 * .
.00000006 A7F4 0005 00000010 29 J AROUND
.0000000A F270 COB8 EOQO0 000000B8 00000000 30 DUMMYPAK PACK DWORD,0(*-*,R14)

.00000010 31 AROUND DC OH

)

onnections - Results

—

EXecuting a Jump SH

[

* When a jump is the target of an EX or EXRL instruction,
the jJump target address is calculated by adding the
Immediate value to the address of the jump itself. The
current instruction address in the PSW is not considered.

* This is both necessary and convenient, because that’s
how the jump instruction will be assembled in storage.

« Same applies to new Compare and Jump instructions.

Loc Object Code Addrl Addr2 Stmt Source Statement
.00000016 4310 C12D 0000012D 30 IC R1,JUMPMASK
.0000001A 4410 C128 00000128 31 EX R1,JUMP2LBL

. (more code)

.00000048 33 LABEL DC OH

. (more code & constants)

.00000128 A704 FF90 00000048 51 JUMP2LBL JNOP LABEL

Base Register Origin SHARE

» Base register pointing to beginning of program is
convenient, especially if the program is aligned on a cache
line or page boundary.

» Base register pointing to middle of program is far less so —
making post-mortem analysis more difficult.

« | disliked having to use negative offsets all the time.

Program Origin >

v

Failing PSW NS| Program Code

v

Base Register

Constants

Putting Constants First

» Base register points to beginning of program.

« Constants (and working storage for non-reentrant
programs) physically exist at the beginning and are
“covered” by the base.

» Best of both worlds solution!

Base Register >
Points to Program

Origin — As Usual! Lo

Program Code

Putting Constants First

. Loc

.00000000
.00000000
.00000006
.00000010
.00000026
.00000026

100000028
10000002C
00000030

.00000008
.00000010
.00000010
.00000018
.0000001C

Addrl
00000000
COF4 0000 0013
C5A885C381A38388
00000010
00000026

Object Code

18CF
R:C 00000000

5910 C018
4120 CO1C
E330 C010 0004

00000008
0000000000000078B

00002710
C1954085A7819497

Addr2
00000036
00000026

00000036
00000036

00000018
0000001C
00000010

00000036

Stmt

—

Y

SHARE

Technology * Connections * Results.

—

Source Statement

MY PGM

DATA
CODE

DATA

CSECT ,

JLU CODE

DC CL10’EyeCatcher
LOCTR ,

LOCTR ,

LR R12,R15

USING MYPGM,R12

(code here)

C R1,=F"1E4’
LA R2,=C’An example’
LG R3,=AD(123)

LOCTR ,

LTORG ,
=AD(123)
=F’1E4°
=C’An example’

(other constants)

END ,

Relative-Immediate Support in z/OS e
V1RY7 Binder SHARE

» Support all relative-immediate instructions (BRAS [JAS],
BRASL [JLAS], LARL, etc.) with one external symbol in
their operands.

* New RI-con RLD item (GOFF only).
« Support similar arithmetic calculations as A-cons.

* Support cross-class references (instruction and target in
same load segment but different classes).

* New z/OS V1R7 Program Object format.
 Works only on z/OS V1R7 and later binders.
o Still called PO4. Confusing. ®

* NOTE: z/OS 1.7 is out of service.

Relative-Immediate Support in z/OS i =
V1RS8 Binder SHARE

Support cross-compile unit references in relative-
Immediate in traditional load modules and object modules.

Support new encoding of RLD data flag (xBTTLLXxX):
* 11100 = two-byte relative-immediate.
« 11110 = four-byte relative-immediate.

Support cross-segment references in relative-immediate
Instructions in program objects.
 Two-byte are allowed in a single segment.

* Four-byte are allowed across segment except if either
segment is RMODE(64).

New Program Object format PO5.
NOTE: z/OS 1.8 is out of service.

The End

SHARE,

In An
2011

	Reducing Base Register Utilization:�How to “Jumpify” Your Programs
	ESA/390 Based Branch Instructions
	ESA/390 Based Branch Instructions
	Based Branch Instructions Added with z/Architecture
	BC Extended Mnemonics
	About (Based) Branches
	Sample (Based) Branch Usage
	Sample Program >4KiB with Complete Base Register Coverage
	Mitigating Limitations on Addressability
	Mitigating Limitations on Addressability
	Mitigating Limitations on Addressability
	A Clever Compiler-Only Solution
	Why Has the Industry Transitioned to Relative Branch?
	ESA/390 Relative Branch Instructions
	ESA/390 Relative Branch Instructions
	Relative Branch Instructions Added with z/Architecture
	Relative Branch Instruction Added with zEnterprise
	BRC/BRAS Extended Mnemonics
	Relative Branch Long Instructions
	BRCL/BRASL Extended Mnemonics
	Which Base Registers Are Eliminated?
	Sample Jump Usage
	Sample Jump Long Usage
	Sample Base Register Coverage For Constants Only
	Compare and Branch Instructions
	Compare and Branch Relative Instructions
	Compare Immediate and Branch Instructions
	Compare Immediate and Branch Relative Instructions
	Compare Logical and Branch Instructions
	Compare Logical and Branch Relative Instructions
	Compare Logical Immediate and Branch Instructions
	Compare Logical Immediate and Branch Relative Instructions
	Compare and Branch Extended Mnemonics
	Sample Compare and Branch Usage
	Sample Compare and Jump Usage
	“Should Not Occur” Abends
	Loading the Address of an Area Within Your Program
	Establishing Temporary Addressability
	Using SYS1.MACLIB(IEABRC) in z/OS
	IEABRCX Usage
	Branch Tables
	Target of EXecute
	Target of EXecute with Other Constants
	Target of EXecute in Literal Pool
	Target of EXecute in Location Counter
	Execute Relative Long
	EXecuting a Jump
	Base Register Origin
	Putting Constants First
	Putting Constants First
	Relative-Immediate Support in z/OS V1R7 Binder
	Relative-Immediate Support in z/OS V1R8 Binder
	Slide Number 53

